Example Package: WeatherStation_V003

Author: JOKI / 25.08.2021

Example Package: Weather Station @ SYS-{'_A RT

Topic: Weather Station
Author: JOKI
Date: 25.08.2021

0. Before you start

This document will give you an overview of the source code for the example package Weather
Station. Before you can work with it you need to set up your working environment as explained
in the document “ExamplePackage_GettingStarted”. Make sure you have read this document
beforehand and executed all the steps to configure your Workbench. Especially, that you have
added all the paths to the Source Location and Includes properties.

Note, that there are two different sets of code for the STM32 microcontroller; one for the
5.0-inch display board and one for the 4.3-inch display board. The screenshots in this
documentation are from the code for the 5.0-inch display board. The 4.3-inch code varies
mainly in the size and position parameters for drawing the weather interface.

For a more detailed explanation of how the microcontroller works, please refer to the

STM32F429 Reference Manual (RM0090) and the Standard Peripheral Library documentation
provided by STMicroelectronics.

1. Introduction

In this example package we will use the BMEG680 environmental sensor to measure pressure,
humidity, temperature and air quality. The sensor is not connected directly to the STM32
microcontroller but to the ESP32-WROOM-32 module. The ESP32 is as well a programmable
microcontroller, but it also provides WIFI and Bluetooth connectivity. We will program the
ESP32 module to retrieve the sensor data from the BME680. The STM32 will ask the ESP32
for this data and get this via UART. Parallel, the ESP32 will act as a Webserver. A WiFi capable
device will be able to connect to the board directly and see the sensor data in any web browser.

2. Additional Requirements for this Example

2.1 Additional required Hardware

e FT232 USB-to-TTL Serial Converter

MiniBridge Female 6-pin Connector by ERNI (for an easy connection to the 1.27 mm
programming pins of the ESP32 module)

2.2 Arduino IDE — ESP32

In this example we also program the ESP32 module of our display board. For programming
we use the Arduino IDE. Therefore, you need to download the latest version of this free
software (for this example the version 1.8.15 was used). Some adjustments need to be done,
S0 you can program the ESP32 module with this IDE. Open the Arduino IDE and open the
preferences window with File -> Preferences. Here, you have to add the URL for the ESP32
board manager.

ExamplePackage_WeatherStation_V003 lofll

Example Package: Weather Station

ESYSZART

Write

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json
at “Additional Boards Manager URLs:” and click OK.

Preferences
Settings | Network

Sketchbook location:

Editor language:
Editor font size:
Interface scale:

Theme:
Compller warnings:
Display line numbers

Verify code after upload

[Juse accessbility features

C:\Users WE—Documents Arduino| Browse

Show verbose output during: [compilation [] upload

Check for updates on startup

Additional Boards Manager LIRLs:I https: ffraw.

Engish (Engish) | (requires restart of Arduino)
2
[/] Automatic | 100 7 [% (requires restart of Arduino)
Default theme | (requires restart of Arduino)
None
[Enable Code Folding
[] Use external editor

Save when verifying or uploading

032/gh _esp32_pdesson | I

015\preferences. txt

oK Cancel

After restarting the IDE you need to open the Boards Manager with Tools -> Board -> Boards
Manager... and install esp32 by Espressif Systems. Now you should be able to select the
ESP32 module as your board. Choose “ESP32 Dev Module”, like in the following picture.

@ sketch_jul152 | Arduino 1.8.15
File Edit Sketch Tools Help

Auto Format.

0 HI
sketeh_jul15a

1 void setup
2 J// put §

11

& void loop(]
7 /7 put o

Archive Sketch

Fix Encoding & Reload
Manage Libraries.
Serial Monitor

Serial Plotter

ESP32 Sketch Data Upload
WiFi101 / WiFiNINA Firmware Updater

Board: "ESP32 Dev Module"

Upload Speed: "115200"

CPU Frequency: "240MHz (WiFi/BT)"
Flash Frequency: "40MHz"

Flash Mode: "QIO"

o _

Crl+ Shift+|
Ctrl+ ShiftsM
Ctrl+Shifts L

Boards Manager...

Arduino AVR Boards iy

ESP32 Arduino ;@ ESP32 Dev Module
ESP32 Wrover Module
ESP32 Pico Kit

Example Package: WeatherStation_V003

Author: JOKI / 25.08.2021

Flash Size: "AMB (32Mb)" TinyPICO
Partition Scheme: *Default 4MB with spiffs (1.2MB APP/1.5MB SPIFFS]" 5.0 Ultra vl
Core Debug Level: “None" MagicBit
PSRAM: "Disabled” Turta loT Node
Port: "COM10" TIGO LoRa32-OLED W1
Get Board Info TGO T
TIGO T7¥1.3 Mini32
Programmer 5

TIGO T7 V1.4 Mini32
XinaBox CW02

Burn Bootloader

To host the webpage for external devices, we will store a HTML file and an image on the built-
in flash of the ESP32 module. For this you need to install a plugin for your Arduino IDE. An
instruction for installing this plugin can be found here: Install ESP32 Filesystem Uploader in
Arduino IDE | Random Nerd Tutorials.

Now you can upload external files to the SPIFFS filesystem of the ESP32 module. This is done
by clicking Tools->ESP32 Sketch Data Upload. The files, that shall be uploaded, have to be in
a directory called “data” in the same location as your Arduino sketch file.

2.3 Arduino IDE — Webserver Libraries

As we are going to implement an asynchronous webserver with the ESP32 module, so that
you can monitor the sensor data remotely, two additional libraries are required which are not
accessible via the Arduino Library Manager. They have to be added manually.

We need the AsyncTCP library and the ESPAsyncWebServer library by me-no-dev which can
be downloaded for free on GitHub. Follow the subsequent links and download each library
code as a ZIP file.

GitHub - me-no-dev/AsyncTCP: Async TCP Library for ESP32
GitHub - me-no-dev/ESPAsyncWebServer: Async Web Server for ESP8266 and ESP32

Extract each ZIP file into /”Arduino-installation-folder’/libraries/. This directory should now
contain the two directories AsyncTCP-master and ESPAsyncWebServer-master.

ExamplePackage_WeatherStation_V003 20f11

https://randomnerdtutorials.com/install-esp32-filesystem-uploader-arduino-ide/
https://randomnerdtutorials.com/install-esp32-filesystem-uploader-arduino-ide/
https://github.com/me-no-dev/AsyncTCP
https://github.com/me-no-dev/ESPAsyncWebServer

Example Package: WeatherStation_V003

Author: JOKI / 25.08.2021

Example Package: Weather Station ﬁ SYS-{'_A RT

2.4 Arduino IDE- Bosch BSEC

Bosch provides an API to access its BME680 sensor. The BSEC Software Library. This can
be installed inside Arduino IDE. Open the Library Manager and search for “BSEC Software
Library” by Bosch Sensortec. Install the latest version. The IDE won'’t find the library files at the
beginning. At first, you need to modify the platform.txt file of the ESP32 board. The file should
be located at:
C:\Users\username\AppData\Local\Arduinol15\packages\esp32\hardware\esp32\version_number\

You need to edit the line which specifies the parameter recipe.c.combine.pattern. This should be line
88. Replace this line with:

recipe.c.combine.pattern="{compiler.path}{compiler.c.elf.cmd}"
{compiler.c.elf.flags} {compiler.c.elf.extra_flags} -Wl,--start-group
{object_files} "{archive_file path}" {compiler.c.elf.libs} {build.extra_libs}
{compiler.libraries.ldflags} -Wl,--end-group -Wl,-EL -0
"{build.path}/{build.project_name}.elf"

After a restart of your Arduino IDE, everything should be ready to work.

ExamplePackage_WeatherStation_V003 3ofll

Example Package: WeatherStation_V003

Author: JOKI / 25.08.2021

Example Package: Weather Station ﬁ SYS-{'-A RT

3. Upload Routine

.) . milhg |- R-B R QE- - - %-0-8-Q%- B
For uploading the whole project, a certain e eweoeee B&lv - = 1
procedure has to be followed. At first, you ~% 5™ .. ,

need to erase the STM32 chip. You can do & sdre) - Golese
this within your Workbench. Open the D oy Spmmiin

Workbench and connect to the display board &S e ey
with the ST-LINK/V2 debugger and with its =i * 25 ...
power supply. Right-click on the project file =~ =i == '
and press Target->Erase chip... Afterwards Renamne. g

Import...
Export.

you can disconnect the ST-LINK/V2.

EF

Build Project

Alternatively, you can erase the STM32 chip Clea Project

with the tool ST-LINK-Utility. i ;

Close Unrelated Projects

Build Targets >
Index >

Build Configurations >

Validate

Show in Remote Systems view
Profiling Tools

Run As

Debug As

Profile As

Restore from Local Histery...
2 Convertto C++ &) Console

¥ s coni '
Now you can flash the ESP32 module. For this you need to connect the USB-to-Serial
converter with the 1.27mm pin connector to the right of the ESP32. The location and the pin
assignments can be found on the pictures below. Pin 1 is marked with a little dot. Therefor the
bottom one is Pin 1. Connect the RX pin of the connector to the TX pin of the USB-to-Serial
converter, the TX pin of the connector to the RX pin of the USB-to-Serial converter and both
ground pins. The GP_ESP32_100 pin is important to the flashing process since this pin defines
the boot mode of the ESP32 module. For flashing, this pin must be connected to ground before
you turn on the power. This will signal the ESP32 to prepare for an upload. Then you can
upload the external data to the SPIFFS and the sketch to the microcontroller in the Arduino-

typical way. Between uploading the external data and flashing the sketch you need to turn the
power off and on again.

VCC 3V3

GP_ESP32 100
ESP32 UART RXD
ESP32 UART TXD

|4 fuo [rof—

DS1031-01-1*5P8BV3-1

Q
Z
o

After uploading everything to the ESP32 turn off the power, disconnect the GP_ESP32_100
pin from ground and turn the power on again.

Now, you can program and flash the STM32 microcontroller as usual.

ExamplePackage_WeatherStation_V003 4 0f 11

Example Package: WeatherStation_V003

Author: JOKI / 25.08.2021

Example Package: Weather Station ﬁ SYS-{'_A RT

4. Explanation of Example Code

41 STM32 Code

4.1.1 Main function

[€] main.c £3

36 static weather_data_struct weather_data;

" Function: int main(void)

* Summary: Entry point of display control application

44 * Parameters:
46 * Return:
48 * Revision History:
49 * Creation Date: 210862021
52=int main(woid) {
54 /* Initialize the peripherals */
HW_Init();
Alinput_Init();
display_init();
59 comm_err_t err = check_communication_esp32();
if (err != FON_OK){
[/ communication with esp32 medule fails
while(1){
63 status_led blink();
64 }
65 }
get_ip address_esp32(8weather_data);
68 draw_weather_interface(weather_data.ip_address);
for(53){
7@ send_cmd_esp32(GET_ALL);
get_data_esp32(8weather_data);
draw_weather_data(weather_data);

delay_ms(1eee);

return @;

7}

We will start our walk through the code at the main function since this gives a perfect overview
of the steps that we will take. At the beginning, the used peripherals are initialized. HW_Init()
initializes and turns on the display backlight. Also, it sets up the different system clocks, the
timer, which counts every microsecond, and the GPIO pins for two of the user LEDs.

Afterwards we initialize the display which also includes the initialization of the SDRAM,
because this is where the buffer for the displayed images will be located. The DMA2D is used
to send the image data directly from the buffer to the LCD, which speeds up the image
manipulation. Part of the display initialization is the drawing of the EBS-SYSTART logo and
the logo of our 2-in-1 display line.

After the initialization process, we first check if the communication between the STM32 and
the ESP32 works correctly. In case it doesn’t, an infinite while-loop is entered and the two user
LEDs on the back of the board start blinking.

In case the communication works fine, at first the display background is drawn. The
background also shows the IP address, where you can find the webpage for remote access.
The address is set in the code for the ESP32 module and therefore has to be retrieved
beforehand.

Then we enter the main loop. Here we get the sensor data, that was collected by the ESP32,
and show it on the display.

ExamplePackage_WeatherStation_V003 50f11

Example Package: WeatherStation_V003

Author: JOKI / 25.08.2021

Example Package: Weather Station

ESYSZART

4.1.2 draw_weather_interface

120/

13

14 * Function: void draw_weather_interface{char® ip_addr)
5 =

16 * summary: Draws the background for the weather station
18 * Parameters:

g =

@ ¥ Return:

2 * Revision History:

3

* Creation Date: 28862021

5= void draw_weather_interface{char®* ip_addr){
DMA2D Fill Color(@xFFFF, Layer 1, Buffer 1);

{//temperature box

//humidity box

Wb LWL b L L L L R RS R R ORI RS R PRI R R
c Wk R @D e O 0 c

DMA2D_Draw_Image((HDP-Display2l Logo_Y.width)/2, (VDP-Display2l Logo_Y.height)/2, Display2l Logo Y.width, Display2l Logo_ Y.height,
Bx5F, REPLACE_ALPHA VALUE, (uint32_t)Display2l Logo_Y.data, CM_RGBS65, Layer I, Buffer I);

DMA2D_Draw_Rectangle(@, @, HDP*2/5, VDP/2, exCFe7, &, Layer 1, Buffer 1);
DMAZD_write string(“Temperature:", 1@, 15, @x95D6, &courier new_23, Layer 1, Buffer 1, Layer 1, Buffer_ 1);

DMA2D_Draw_Rectangle(@, VDP/2-3, HDP*2/5, VDP/2 -27, @xCF@7, 6, Layer 1, Buffer_I1);
DMA2D_write_string(“Humidity:", 1@, VDP/2 +15, @x95D6, &courier_new_23, Layer_ 1, Buffer_1, Layer 1, Buffer_1);

5

6 f{pressure box

7 DMA2D_Draw_Rectangle(HDP*2/5-3, @, HDP*3/5+3, VDP*2/3, @xCFe7, 6, Layer_1, Buffer_1);

8 DMA2D_write_string("Pressure:", HDP*2/5 +1@, 15, @x9506, &courier_new_23, Layer_1, Buffer_I1, Layer 1, Buffer 1);

9 DMA2D_write_string(“approx. Altitude:", HDP*2/5 +38, VDP/2, @xseee, &courier_new 15 2, Layer_ 1, Buffer_ 1, Layer_ 1, Buffer_1);
4@ //gas resistance box

41 DMA2D_Draw_Rectangle(HDP*2/5-3, VDP*2/3-3, HDP*3/5+3, VDP*1/3 -27, @xCF@7, 6, Layer_I, Buffer_1);

42 DMA2D_write_string("Gas Resistance:", HDP*2/5 +1@, VDP*2/3 +15, @x95D6, &courier_new_23, Layer 1, Buffer_1, Layer_ 1, Buffer 1);
43

44 //IP-Address

45 DMA2D_write_string("IP:", 1@, VDP-28, @xBDEF, &courier_new_15 2, Layer_ I, Buffer 1, Layer 1, Buffer 1);

46 DMA2D_write_string(ip_addr, 58, VDP-28, @xBDEF, &courier_new_15_2, Layer_1, Buffer 1, Layer_ 1, Buffer 1);

47 }

This function uses the basic drawing functions, introduced in the example package Drawing
Text and Images, to create the background for the display. In this example we use the two-
layer mode for the display. The background is drawn on Layer 1, since this one lays behind
Layer 2. The data is drawn on Layer 2, as you will see later.

4.1.3 send_cmd_esp32

This function sends a one-byte command to
the ESP32 module. Since the STM32 and
the ESP32 are connected by their UART
pins, we can simply use the basic UART
functions to communicate.

The commands are specified in an
enumeration and must match the definition
in the ESP32 code.

B
1

R R YR YRR ST R YR P

5
6
8
9
)
2
3

* Function: comm_err_t send_cmd_esp32(uintd_t cmd)
* Summary: Sends @ one-byte command to the esp32 module

* Parameters:

tmd - one-byte command

* Return:

@ - if success

* Revision History:
* Creation Date: 28862821

—comm_err_t send cmd esp32(uintd_t cmd) {

tTimer send_timeout;

send_timeout = timer_get_time ms();

uart_sendByte(CoM3, cmd);

if(timer_get time_ms() - send_timeout > 18) return FCN_TIMEQUT;

return FON_OK;

ExamplePackage_WeatherStation_V003

6 of 11

Example Package: WeatherStation_V003

Author: JOKI / 25.08.2021

Example Package: Weather Station ﬁ SYS-{'_A RT

4.1.4 get _data esp32

After the command is sent to the ESP32,
we immediately get the response, which
is stored in a buffer until it is read. This
reading of the response happens in the
function get_data_esp32(). Since the
individual values are floats, we read the
four bytes, combine them back to a float
by using the union data type and store
them in a struct for the whole sensor
data. This is done for the parameters
temperature, humidity, pressure,
approximate altitude and gas resistance. 7

* Functiocn: comm_err_t get_data_esp32(weather_data_struct® w_data)

WoR @D

* Summary: Get the temperature, humidity, pressure,
* approximate altitude and gas resistance
* from bme68@ sensor via esp32

@

* Parameters:

* Return:
@ - if success

8
]
@

R N O R I O (O R (Y

2
73

* Revision History:
* Creation Date: 28862021

comm_err_t get_data_esp32(weather_data_struct® w_data) {
uintd_t data[4];
//temperature
while(uart_Received4Byte(COM3, &data[@], BIG_ENDIAN T) == @);
float_bytes.bytes[@] = data[@];
float_bytes.bytes[1] = data[1];
float_bytes.bytes[2] = data[2];
float_bytes.bytes[3] = data[3];
w_data->temperature = float_bytes.floatVal;

)

Wk P @0

J /humidity

while(uart_Receive4Byte(COM3, &data[@], BIG_ENDIAN T) == @);
float_bytes.bytes[@] = data[@];

float_bytes.bytes[1] = data[1];

float_bytes.bytes[2] = data[2];

float_bytes.bytes[3] = data[3];

w_data->humidity = float_bytes.floatval;

//pressure

while(uart_Received4Byte(COM3, &data[@], BIG ENDIAN T) == @);
float_bytes.bytes[@] = data[@];

float_bytes.bytes[1] data[1];

Tloat_bytes.bytes[2] = data[2];

float_bytes.bytes[3] = data[3];

w_data->pressure = float_bytes.floatVal;

//approx altitude

while(uart_Received4Byte(COM3, &data[@], BIG_ENDIAN T) == @);
float_bytes.bytes[@] = data[@];

float_bytes.bytes[1] = data[1];

Tloat_bytes.bytes[2] = data[2];

float_bytes.bytes[3] = data[3];

LI Fd P G WD B0 sl O W s L RD b G WD GO Oh i
o0

D EE DD E D DD D0 W W0 DLW W WD D 0l 0l 0000 0J 0o 00000
o] +

5 w_data-rapprox_altitude = float bytes.floatVal;
6 //gas resistance
7 while(uart_Receive4Byte(COM3, R&data[@], BIG_ENDIAN T) == 8);
3 float_bytes.bytes[@] = data[@];
9 float_bytes.bytes[1] = data[1];
1@ float bytes.bytes[2] = data[2];
111 float_bytes.bytes[3] = data[3];
11z w_data->gas_resistance = float_bytes.floatVal;
LLa
14 return FCN_OK;
15 }

ExamplePackage_WeatherStation_V003 7 of11

Example Package: WeatherStation_V003

Author: JOKI / 25.08.2021

Example Package: Weather Station ﬁ SYS-{'-A RT

4.1.5 draw_weather_data

unction: draw_weather_data(weather_data_struct w_data)

53 " Summary: Draws the values retrieved from the ESP32 on Layer 2 of the display
54

55 * Parameters: -

56 *

57

58 * Return: -

50 *

60 " Revision History:

61 " Creation Date: 28062021

62 :

64-void draw_weather_data(weather_data_struct w_data){

65 char temp[11];

66 DMA2D_Fill_Color(Bx7FFF, Layer 2, Buffer 1);

67 {//temperature

68 sprintf(temp, “"¥4.2f ¥cC", w_data.temperature, 8x7f);

69 //DMAZD_Draw_FilledRectangle(2@, VDP*1/8, HDP*2/5-58, VDP*2/8, @xFFFFFFFF, Layer_2, Buffer_1);

e DMAZD_write_string(temp, HDP/S5 -25%4, VDP/5, @xFFeeeeee, &arial 56 _deg, Layer_2, Buffer_1, Layer_2, Buffer_1);

72 hunldlf

73 , "E2.ef BE", w_data.humidity);

74 | J.lledRec"angleuZB VDP*5/8, HDP*2/5-5@, VDP*2/3, @xFFFFFFFF, Layer_2, Buffer_1);

75 DﬂAQD write strlng(temp HDOP/5 -arial_56.chars-rimage-»>width*2, VDP*2/3, @xFFeeeeee, &arial 56, Layer_2, Buffer_1, Layer_2, Buffer_1);
76

77 //pressure

78 sprintf{temp, "%6.2f hPa", w_data.pressure);

79 //DMA2D Draw FilledRectangle(HDP*2/5+2@, VDP/S, HDP*3/5-5@, VDP*1/6, @xFFFFFFFF, Layer 2, Buffer 1)

@ DMAZD write_string(temp, HDP*7/1@ -arial 56.chars->image-»width*6, VDP/5, @xFFeeeeee, &arial 56, Layer 2, Buffer 1, Layer 2, Buffer 1);

//approx altitude

sprintf(temp, "¥3.8f m", w_ data.approx_altitude);

//DMAZD_Draw_FilledRectangle (HDP*2/5+2@+13*2@, VDP/2-1@, HDP/4-1@, VDP/6-5, @xFFFFFFFF, Layer_2, Buffer_1};
DMA2D_write_string(temp, HDP*2/5 +38+13%28, VDP/2, @xFF@@@0ed, &courier_new_23, Layer 2, Buffer_ 1, Layer_2, Buffer 1);

Py

0 o oo Co Ga G

//gas resistance

p "%5.2F kOhm", w_data.gas_ reslstance)
89 //DMA2D Draw_FilledRectangle(HDP*2/5+28, VDP*3/12, HDP*2/5, VDP*1/6, @xFFFFFFFF, Layer_2, Buffer_1);
98 DMAZD write_string(temp, HDP*7/1@ -courier_new_23.chars->image->width®s, VDP*EK4+BB @xFFBERRR, Lcourier_new 23,
a1 Layer 2, Buffer 1, Layer 2, Buffer 1);
o

This function now draws the retrieved values from the sensor as a string. Note, that this time
we draw on Layer 2 which lies on top of Layer 1. Layer 2 is at first completely transparent as
you can see in line 66. The color format used in the two-layer mode is ARGB1555, therefore
the color Ox7FFF is white but transparent. This is necessary, because otherwise we would
cover the background. Only the strings for the sensor value are opaque.

4.2 ESP32code

1% float temperaturs; // deg Celsius

b= //hPa
approx_altitude; //meters
gas_resistance; // kChm
breath wvoc; //ppm
iaq_value;

co2_squivalent; //ppm

'/ Replace with your own network credentials

nst char* apSSID = "Weather Station™;

30 const char* apPASSWORD = ""; // only needed for key protected network
1 IPAddress apIP({l1%2, 168, 0, 1);

33 AsyncWebServer server(30):

At the beginning of the Arduino code for the ESP32, we declare some variables that are
needed. At first, we have the floats for the individual sensor values. Afterwards, we define the
parameters for our webserver. The name of the WiFi-network generated by the ESP32 module
is here called “Weather Station”. The password string is kept empty, because we don'’t
establish a key protected network. But both strings can be changed as you like. The IP address
for the webpage is stored in an IPAddress data type. We chose 192.168.0.1, but again, you
can change this if you want to. At last, we declare an asynchronous Webserver object which
listens on port 80.

ExamplePackage_WeatherStation_V003 8of 11

Example Package: WeatherStation_V003

Author: JOKI / 25.08.2021

Example Package: Weather Station ﬁ SYS-{'_A RT

vold setup({) {
Serial.begin(115200);
hspi.begin();
iagSensor.begin{ls, hspi);

bsec virtual sensor t sensorlList[l0] = {

/i iagSensor.rawlemperature

{/ iagSensor.rawHumidity

// iagSenscr.gasBesistance

/{ iagSensor.iag

f/ iagSensor.staticlag

iagSensor.col2Equivalent
Sensor.breathVocEquivalent

URE, // lagSensor.temperature
T, [/ iagSensor.humidity

iagSensor.updateSubscription(sensorlist, 10, B5SEC SRMFLE RATE LF);

SPIFFS.k=gin();
WiFi.mode (

_RLE):

onfig{apIP, aplP, IPAddress(255, 255, 255, 0));
WiFi.softAP{apS5ID); //open network; to set up pre-shared key protected network: WiFi.softAP({app55ID, apPASSWORD)

WiFi.sof

Let’s take a look at the setup function. It starts with setting up the Serial connection which is
Arduino’s name for the UART connection to the STM32. Then we initialize the SPI pins, since
the BMEG80 sensor is using this interface to communicate, and the sensor object iagSensor.
The SPIFFS filesystem also needs to be started, because the HTML page and an image for
the page are stored there and need to be accessed.

Next, we configure our access point with the IP address, we specified before and then open
the network with the name stored in apSSID. You could also add a password.

server.on("/", HITP_GET, []{&syncWebServerRequest *request)|
request-rsend (SPIFFS, "/webpage.html™, "text/html™);

b

server.on("/ebsaystart_logo”, HITF_GET, [](AsyncWebServerRequest *request){
request->»send (SPIFF5, "/ebssystart_logo.jpg™, "image/jpg"):

b

server.on("/temperature™, HITF GET, [] (AsyncWebServerRequest *request){
request-»send (200, "text/plain”, String(tempsrature));

b

server.on("/humidity™, HITE_GET, []({AsyncWebServerRequest *request){
request-»send (200, "text/plain”, String(humidity)):

b

server.on("/pressure™, HITE GET, []({AsyncWebServerRequest ‘reguest)|
request-»sznd (200, "text/plain”, String(pressurs));

s

server.on("/faltitude™, HTTF_GET, [](AsyncWebServerRequest *request){

request—»send (200, "text/plain™, String{approx_altitude)):

gasResistance™, HITP GET, [] (AsyncWebServerRequest *request)|
request->send (200, "text/plain”, String{gas_resistance)):

i

server.on("/co2equivalent™, HITF_GET, [](AsyncWebServerRequest *request) |
request-»send (200, "text/plain”, String{co2_equivalent));

b

server.on("/iag", HITF_GET, [](AsyncWebServerRequest *‘request)|
request-»send (200, "text/plain”, String(iag_wvalue)):

b

server.on("/I

)", HITP_GET, []{RsyncWebServerBequest *request){
end {200, "text/plain”™, String({breath voc));

request-:

The second part of the setup function configures the webserver. At first, we define that when
you type in the predefined IP address in a web browser, which means a “GET /”-request, the
HTML file in the SPIFFS is send to the user. In the HTML file, a java script will send every
second multiple GET requests, asking for a new temperature, humidity, ... value. These
requests will be answered by sending the respective data. After configuration, we start the
server.

ExamplePackage_WeatherStation_V003 90of11

Example Package: WeatherStation_V003

Author: JOKI / 25.08.2021

Example Package: Weather Station E SYSTA RT

Now, let’s take a look at the loop function.

viold loop() {

if (iagSensor.run()) { // If new data is availakle
return;

}
temperature = iagSensor.temperaturs; Jf/ deg Celsius
humidity = iagSensor.humidity; //percent
pressure = ijagSensor.pressure/100.0; J/hPa
approXx_altitude = calcAltitude (pressurs, 1013.25): // meters
gas_resistance = lagSensor.gasBesistance/1000.0; //k0hm
co2_equivalent = iagSensor.colEquivalsnt; //ppm
iag value = ilagSensor.iadr

=]

breath woc = iagSensor.breathVocEquivalent; //ppm

At the beginning, the BMEG80 sensor is asked if there is new data. If not, we start again at the
top. If there is new data, we store the values in the respective variables.

The second part of the loop function manages the ifiserial.available()=0){
UART communication with the STM32. If the 1_“_17"“11:_5‘3“51':5“”“
ESP32 received an input, it responds depending Frreniimpue) i

cass 0x00:

on the Value Of the byte. Serial.writs I{DKAAF.'
break;

case Ox0l:
float_bytes.floatVal = temperature;
Serial.write(float bytes.bytes, 4):
float bytes.floatVal = humidity:
Serial.write(float_bytes.bytes, 4):
float _bytes.floatVal = pressure;
Serial.write ({float_bytes.bytes, 4);
float_bytes.floatVal = approx_altitude;
Serial.write(float bytes.bytes, 4);
float_bytes.floatVal = gas_resistance;
Serial.write(float bytes.bytes, 4):
break;

case 0x02:
float_bytes.floatVal = temperature;
Serial.write (float_bytes.bytes, 4);
break;

cass 0x03:
float_bytes.floatVal = humidity:
Serial.write ({float_bytes.bytes, 4);
break;

case 0x04:
float bytes.floatVal = pressure;
Serial.write(float bytes.bytes, 4):
break:

case 0x05:
float_bytes.floatVal = approx_altitude;
Serial.write({float_bytes.bytes, 4);
break;

cass Ox06:
float_bytes.floatVal = gas_resistance;
Serial.write (float_bytes.bytes, 4);
break;

case 0x07:
Serial.println(WiFi.softAPIF(});

break;

ExamplePackage_WeatherStation_V003 10 of 11

Example Package: WeatherStation_V003

Author: JOKI / 25.08.2021

Example Package: Weather Station ﬁ SYS-{'-A RT

5. Ideas for Exercise Project

Here, we want to give you some suggestions how you could modify our example code and
make your own little project.

You could add little icons to the weather interface, which change depending of the values e.g.
of the temperature. So that you could graphically indicate, if it is warm, cold, wet, ...

ExamplePackage_WeatherStation_V003 11 0of 11

