

ExamplePackage_TCP_Echoserver_V002 1 of 7

Example Package: TCP Echo-Server

E
x
a
m

p
le

 P
a
c
k
a
g
e
:

T
C

P
_
E

c
h
o
s
e
rv

e
r_

V
0
0
2

A
u
th

o
r:

 J
O

K
I
/

1
8
.0

8
.2

0
2
1

0. Before you start

This document will give you an overview of the source code for the example package TCP
Echo-Server. For a more detailed explanation of how the microcontroller works, please refer
to the STM32F429 Reference Manual (RM0090) and the description of STM32F4 HAL
drivers (UM1725) provided by STMicroelectronics.

In this example you will work with the STM32CubeIDE by STMicroelectronics and use the
HAL Library. Therefore, you need to install STM32CubeIDE.

After installation, open the IDE and create a new project from existing configuration file (.ioc).

In the next window, browse for the ioc-file “ExamplePackage_TCP_Echoserver.ioc”, which is
provided with the example packages file, as the STM32CubeMX .ioc file and choose a

project name. After pressing Finish, STM32CubeIDE will generate the project.
Next, open the project folder in your file explorer and replace the directories Core,
Drivers, LWIP and Middlewares with the directories of the same name provided in the
example package. After refreshing your project in CubeIDE, you should be able to
build and flash the source code.

The building and flashing process is similar to the System Workbench IDE by
OpenSTM32. So make sure that you have read the documentation to the
“ExamplePackage_GettingStarted”. Note, that the display size is this time specified in
the file Core/Inc/global_Display_Touch_HAL.h.

1. Introduction

In this example package we will implement a simple echo-server. A TCP-connection to the
display board will be established and the messages that you send to the board will be given
back. To connect your display board via ethernet to a network you need the Ethernet-
Breakout-Board provided by EBS-SYSTART.

For establishing the websocket on the STM32-microcontroller we use the open-source
TCP/IP stack lwIP, which is implemented as third party middleware inside the CubeIDE.

Topic: TCP Echo-Server
Author: JOKI
Date: 18.08.2021

https://www.st.com/en/development-tools/stm32cubeide.html

ExamplePackage_TCP_Echoserver_V002 2 of 7

Example Package: TCP Echo-Server

E
x
a
m

p
le

 P
a
c
k
a
g
e
:

T
C

P
_
E

c
h
o
s
e
rv

e
r_

V
0
0
2

A
u
th

o
r:

 J
O

K
I
/

1
8
.0

8
.2

0
2
1

1.1 Connecting to the Webserver

After successfully flashing the code and connecting the display board to your local network
with the Ethernet-Breakout-Board, you can establish a TCP connection with it. We
recommend the free software SocketTest by akshath to test your newly created server.

Open the application and go to the tab Client. Here you need to enter the IP Address of the
webserver and the port number. Those can be chosen by you and changed in the source
code of the example package.

Press Connect and you should be able to send messages to the display board, which will be
echoed back.

https://sourceforge.net/projects/sockettest/

ExamplePackage_TCP_Echoserver_V002 3 of 7

Example Package: TCP Echo-Server

E
x
a
m

p
le

 P
a
c
k
a
g
e
:

T
C

P
_
E

c
h
o
s
e
rv

e
r_

V
0
0
2

A
u
th

o
r:

 J
O

K
I
/

1
8
.0

8
.2

0
2
1

2. Explanation of Example Code

2.1 Main function

We will start our walkthrough in the code at the main function since this gives a perfect
overview of the steps that we will take. At the beginning, the used peripherals are initialized.
HAL_Init() resets all peripherals and initializes the Flash interface and the Systick. Then, the
various clocks are configured.

Afterwards the GPIO clocks are enabled and the lwIP stack is initialized. We will later take a
closer look at this function.

Until now, we stepped through functions that are automatically generated by STM32CubeIDE
according to changes you make in the ioc-file of your project. The next two initialization
functions are part of our driver packages and do the setup for the SDRAM and the display.
We need the SDRAM, because this is the location, where the data to be displayed on the
screen will be stored.

The commands from line 109 to 118 implement a short start sequence with our logos.
Afterwards the needed information to connect to the echo-server is displayed. This contains
the IP-address and the port number.

Finally, the main loop is entered. In this loop, the ethernet buffer is periodically checked for
received packages. Those will be handled as specified in the initialization of lwIP. The
function sys_check_timeouts must also be called periodically in the main loop to handle all
timers for all protocols in the stack.

ExamplePackage_TCP_Echoserver_V002 4 of 7

Example Package: TCP Echo-Server

E
x
a
m

p
le

 P
a
c
k
a
g
e
:

T
C

P
_
E

c
h
o
s
e
rv

e
r_

V
0
0
2

A
u
th

o
r:

 J
O

K
I
/

1
8
.0

8
.2

0
2
1

2.2 MX_LWIP_Init

At the beginning of this initialization function we specify the IP addresses for the network
connection of the display board. We used 192.168.1.65, but if this IP address is occupied in
your network or you just want to use another one, you can change it. Make sure to alter the
message, that will be shown on the display accordingly.

The subsequent functions are generated automatically by the CubeIDE and set up the data
structures and handlers for the network interface.

Afterwards, we need to initialize the TCP server. This is done by calling tcp_echoserver_init.

ExamplePackage_TCP_Echoserver_V002 5 of 7

Example Package: TCP Echo-Server

E
x
a
m

p
le

 P
a
c
k
a
g
e
:

T
C

P
_
E

c
h
o
s
e
rv

e
r_

V
0
0
2

A
u
th

o
r:

 J
O

K
I
/

1
8
.0

8
.2

0
2
1

2.3 tcp_echoserver_init

At first, a TCP protocol control block (TCP pcb) is created. This pcb will be bound to port
4949. Again, if you prefer another port, you can change this value. If the binding produced an
error, the memory of the pcb-object is freed. Otherwise, we set the state of the connection to
LISTEN, which means that it is able to accept incoming connections, and specify the
function, which shall be called if an incoming connection is accepted. This function will be
accept_callback.

2.4 accept_callback

One part of the accept_callback is to generate an instance of the tcp_server_struct, which
will contain the information of the TCP connection. This instance will be passed as argument
to the pcb, so that it can be accessed by the other callback functions.

The main task of the accept_callback is to specify these callback functions. In line 70 – 72
we specify the callbacks that shall be called if new data arrives (receive_callback), if a fatal
error has occurred on the connection (error_callback) and the function that shall be called to
poll the application (poll_callback).

ExamplePackage_TCP_Echoserver_V002 6 of 7

Example Package: TCP Echo-Server

E
x
a
m

p
le

 P
a
c
k
a
g
e
:

T
C

P
_
E

c
h
o
s
e
rv

e
r_

V
0
0
2

A
u
th

o
r:

 J
O

K
I
/

1
8
.0

8
.2

0
2
1

2.5 receive_callback

In the receive function, different actions are taking place, depending on the server state. In
error cases or if the connection is closed by a remote host, the memory of the data
structures, which hold the information about the connection, will be freed.

The more interesting part is in line 125 – 160, where it is specified what shall happen with
successfully received data.

As you can see, the received data (variable p) won’t be processed but only sent directly
back.

2.6 error_callback

The error callback only frees the memory of the tcp_server_struct.

ExamplePackage_TCP_Echoserver_V002 7 of 7

Example Package: TCP Echo-Server

E
x
a
m

p
le

 P
a
c
k
a
g
e
:

T
C

P
_
E

c
h
o
s
e
rv

e
r_

V
0
0
2

A
u
th

o
r:

 J
O

K
I
/

1
8
.0

8
.2

0
2
1

2.7 poll_callback

The poll function will be called, when the connection is idle (i.e. not data is either transmitted
or received). If there is still data in the tcp_server_struct, that should be sent (line 207), this
will be done. If there is nothing to do, the connection will be closed (line 219 and 227).

3. Ideas for Exercise Project

Here, we want to give you some suggestions how you could modify our example code and
make your own little project.

In our example package Processing Touch Input and UART Communication we implemented
a basic UART communication which sends the touch input data to a connected PC. You
could now implement a similar application which sends this information via Ethernet to a
computer in your network.

