

ExamplePackage_BLE-Module_V200 1 of 8

Example Package: BLE-Module

E
x
a
m

p
le

 P
a
c
k
a
g
e
:
B

L
E

-M
o
d
u
le

_
V

2
0
0

A
u
th

o
r:

 J
O

K
I
/

3
0
.0

8
.2

0
2
1

0. Before you start

This document will give you an overview of the source code for the example package BLE-
Module. Before you can work with it you need to set up your working environment as
explained in the document “ExamplePackage_GettingStarted”. Make sure you have read this
document beforehand and executed all the steps to configure your Workbench. Especially,
that you have added all the paths to the Source Location and Includes.

For a more detailed explanation of how the microcontroller works, please refer to the
STM32F429 Reference Manual (RM0090) and the Standard Peripheral Library
documentation provided by STMicroelectronics.

1. Introduction

In this example package we will put the BLE-module, which is located on the 4.3- inch and
5.0-inch display boards, in operation. The used module is the BMD-300 manufactured by
Rigado. The example application will let you send strings via Bluetooth to the display board.
The string will then be displayed. You can also change color and position of the next string
by using specific commands.
For the connecting and sending/receiving data via Bluetooth you need the software nRF
Connect by NordicSemiconductor, which is available for desktop (Windows, Linux or macOS)
and for your smartphone.

1.1 Using nRF Connect for Mobile and configuring the BMD-300

In this section you will learn, how to use the app nRF Connect for Mobil which will be needed
for this example. Before the example code works, you need to configure the BMD-300
module, which is also done via the app.

Install the app from your App Store and open
it. At the beginning you will need to scan for
the available Bluetooth devices and search
for the BMD-300. Obviously, the display
board has to be connected to its power.

By default, the BMD-300 device is called
“RigCom”. You can change this name later.
Click Connect.

Screenshot 1

Topic: BLE-Module
Author: JOKI
Date: 30.08.2021

ExamplePackage_BLE-Module_V200 2 of 8

Example Package: BLE-Module

E
x
a
m

p
le

 P
a
c
k
a
g
e
:
B

L
E

-M
o
d
u
le

_
V

2
0
0

A
u
th

o
r:

 J
O

K
I
/

3
0
.0

8
.2

0
2
1

You should see this tab when successfully
connected to the BMD-300.

Screenshot 2

We will at first change the name of our
Bluetooth device. For this you need to click
on Unknown Service. A submenu will show.
Here you must change the Unknown
Characteristic with the UUID:

2413B43F-707F-90BD-2045-2AB8807571B7

Click on the upload-button.

Screenshot 3

ExamplePackage_BLE-Module_V200 3 of 8

Example Package: BLE-Module

E
x
a
m

p
le

 P
a
c
k
a
g
e
:
B

L
E

-M
o
d
u
le

_
V

2
0
0

A
u
th

o
r:

 J
O

K
I
/

3
0
.0

8
.2

0
2
1

A new window will pop up and ask you for
the value, you want to write. You need to
send two values. Therefore, you need to
click ADD VALUE once. The first one is a
byte with the value 0x61. This tells the
BMD300 that the next parameter will be the
device name. As the second value you need
to choose text as type and type in your own
device name. The device name must contain
1 to 8 ASCII characters. Then transmit your
values by pressing SEND. After
disconnecting and scanning for the available
Bluetooth devices, you should find the BMD-
300 module with your chosen name.

Make sure, that you select the correct types
of the values. The first one is a BYTE and
the second one a TEXT.

Screenshot 4

Next, we need to change some
configurations, so that the BMD300 can
communicate properly with the STM32-
microcontroller. You will have to repeat
these steps on every reconnect with the
BLE-Modul

At first, we will enable the pass-through
mode. This means, that the BMD300 will
transmit all received data via UART to the
connected STM32. For enabling this you
need to open the submenu of Nordic UART
Service (see Screenshot 2). Go to the end of
the list and change the value of the
characteristic with the UUID:

6E400008-B5A3-F393-E0A9-E50E24DCCA9E

(see red square in Screenshot 5)

Screenshot 5

ExamplePackage_BLE-Module_V200 4 of 8

Example Package: BLE-Module

E
x
a
m

p
le

 P
a
c
k
a
g
e
:
B

L
E

-M
o
d
u
le

_
V

2
0
0

A
u
th

o
r:

 J
O

K
I
/

3
0
.0

8
.2

0
2
1

Change the value to 0x01 and press SEND.
(See Screenshot 6)

As a second parameter we need to configure
the hardware flow-control, for a correct
UART communication between STM32 and
BMD300. This must be disabled. Normally,
this should be disabled by default. But it’s
better to do it manually, so you can be
certain. This is done by setting the
characteristic with UUID:

6E400006-B5A3-F393-E0A9-E50E24DCCA9E

(see green square in Screenshot 5)

The new value must also be 0x00.

Screenshot 6

Finally, you need to enable notifications for
TX Characteristics. This is done by clicking
on the symbol with three arrows looking
down. Every time you click this button, its
state will change (crossed-out or not
crossed-out). When the symbol is crossed-
out, everything is correct and you should see
that the value is “Notifications enabled”.

Now, everything is configured properly, so
that you can start to use the example
package.

Screenshot 7

For flow-control:
0x00

ExamplePackage_BLE-Module_V200 5 of 8

Example Package: BLE-Module

E
x
a
m

p
le

 P
a
c
k
a
g
e
:
B

L
E

-M
o
d
u
le

_
V

2
0
0

A
u
th

o
r:

 J
O

K
I
/

3
0
.0

8
.2

0
2
1

The core function of this example package is
to send a string via Bluetooth to the display
board. This string will be painted on the
display. You send a string by writing it to the
RX Characteristic.

Screenshot 8

Just type in your text and press SEND.

Note, that you need to finish your string
with a new line (CR). Otherwise, the
example code is not able to distinguish
between subsequent inputs.

Also note, that each message can only
contain 20 bytes, including the newline-
character at the end and all spaces.
Therefore, your string can only consist of 19
characters. If your string consists of more
than 19 characters +CR, the connection with
the BLE-Module is terminated.

Screenshot 9

ExamplePackage_BLE-Module_V200 6 of 8

Example Package: BLE-Module

E
x
a
m

p
le

 P
a
c
k
a
g
e
:
B

L
E

-M
o
d
u
le

_
V

2
0
0

A
u
th

o
r:

 J
O

K
I
/

3
0
.0

8
.2

0
2
1

2. Explanation of Example Code

2.1 Main function

We will start our walkthrough of the code at the main function since this gives a perfect
overview of the steps that we will take. At the beginning, the used peripherals are initialized.
HW_Init() initializes and turns on the display backlight. Also, it sets up the different system
clocks and the timer, which counts every microsecond.

Afterwards we initialize the display which also includes the initialization of the SDRAM,
because this is where the buffer for the displayed images will be located. The DMA2D is
used to send the image data directly from the buffer to the LCD, which speeds up the image
manipulation. Part of the display initialization is the drawing of the EBS-SYSTART logo. The
function that executes this task is explained in the Example Package-documentation for
Drawing Text and Images.

The function Rigado_BMD_300_init initializes the UART communication and the interrupt
function for the connection between the BMD300 module and the STM32-chip.

At the end of the initialization the struct font is filled with default values by string_props_init.
We need a struct to store the values for the position and the color of the string, so that other
functions can change these depending on a transmitted command. Then we wait a second
and clear the buffer for the UART data. This is necessary, because the ESP32-WROOM-32
module, which is connected to the same UART lines, sends a message on each restart,
which contains its configuration. So, we wait a second to make sure, we got the whole
message and delete it afterwards.

In the main loop, the UART buffer is periodically checked for a new line of input. If the new
line contains a command, which is marked by beginning with a $-symbol, a function to
process the command in called. Otherwise, the string will be displayed on the screen on the
position and in the color, that is stored in font.

ExamplePackage_BLE-Module_V200 7 of 8

Example Package: BLE-Module

E
x
a
m

p
le

 P
a
c
k
a
g
e
:
B

L
E

-M
o
d
u
le

_
V

2
0
0

A
u
th

o
r:

 J
O

K
I
/

3
0
.0

8
.2

0
2
1

2.2 Rigado_BMD_300_init

At the beginning of this function the GPIOs for the UART connection to the BMD300 are
initialized. Afterwards, the parameters for the UART communication are configured. Note that
the baud rate is 57600 this time. This is the default value of the BMD300. If you want another
baud rate, you need to change this on the Bluetooth module as well.

2.3 process_font_command

This function is called, after we already know, that the string contains a command. The
command and its parameters are separated by spaces and therefore we use the C-library
function strtok to get each individually. The application knows only three different commands;
one to change the color of the strings, one to change the x-position and one to change the y-
position.

ExamplePackage_BLE-Module_V200 8 of 8

Example Package: BLE-Module

E
x
a
m

p
le

 P
a
c
k
a
g
e
:
B

L
E

-M
o
d
u
le

_
V

2
0
0

A
u
th

o
r:

 J
O

K
I
/

3
0
.0

8
.2

0
2
1

The commands must have the following format:

Color Command: $color R G B With R, G and B being numbers in the range of
0 to 255 representing the red, green and blue
values

x-Position Command: $xpos value With value being the pixel number of the
horizontal start position. The range must not
succeed the display size.

y-Position Command: $ypos value With value being the pixel number of the vertical
start position. The range must not succeed the
display size.

Note, that each command has to end with a new line (CR) just like every message
transmitted to the display board via Bluetooth. Otherwise, the STM32 can’t distinguish
between subsequent messages.

