Example Package: Drawing Text and Images_V003

Author: JOKI / 05.07.2021

Example Package: Drawing Text and Images @ SYS-{'_A RT

Topic: Drawing Text and Images
Author: JOKI
Date: 05.07.2021

0. Before you start

This document will give you an overview of the source code for the example package Drawing
Text and Images. Before you can work with it you need to set up your working environment as
explained in the document “ExamplePackage_GettingStarted”. Make sure you have read this
document beforehand and executed all the steps to configure your Workbench. Especially,
that you have added all the paths to the Source Location and Includes properties.

For a more detailed explanation of how the microcontroller works, please refer to the

STM32F429 Reference Manual (RM0090) and the Standard Peripheral Library documentation
provided by STMicroelectronics.

1. Introduction

In this example package we will use basic functions to draw different items on the display.
Additional to lines and rectangles, we will draw complete images and write text. The display
interface of the STM32F429 microcontroller can work with two layers, which can be merged
together to get the final output. But we will only use one layer. Each layer has two memory
buffers. You can select in your code, which one shall be the active one. So, while one buffer
is displayed, you can fill the other buffer with new image data and switch buffer. These buffers
are located on the external SDRAM.

ExamplePackage DrawingTextAndimages_V003
lof5

Example Package: Drawing Text and Images_V003

Author: JOKI / 05.07.2021

Example Package: Drawing Text and Images ﬁ SYS-{'-A RT

2. Explanation of Example Code

2.1 Main function

[main.c 52

29 extern tImage ebssystart logo_35;
38 extern tImage twoInone_display_logo;
31 extern tFont courier_new;

32 extern tFont courier_new_itallic;
33 extern tImage smiley leepx;

e Function Prot
38 wvoid HW_Init(void);
39 void display_init(void);

26 void gpia_init(void);

41 void status led blink(void);

Function: int main(void)

47 Summary: Entry point of display control application
48

49 Parameters:

o8

51 Return:

52

53 Revision History:

54 Creation Date: 83042019

57=int main(void) {

58 /¥ Initialize the peripherals */
59 HH_Init():

60 display_init();

DMA2D Fill Color(@xFF@@66FF, Layer 1, Buffer 1);

DMA2D Draw_FilledRectangle(21, 15, 58, 38, @xFFeeFFee, Layer 1, Buffer 1);

DMA2D write_string("Hello World!™, 25, 26, @x8@FF@@88, &courier_new , Layer I, Buffer 1, Layer 1, Buffer 1);

DMA2D write_string("I'm italic.", 25, 58, Ox@BFFB@8, &courier new_itallic , Layer 1, Buffer 1, Layer 1, Buffer 1);

DMA2D_Draw_Y_Line(28, 6, 75, 1, BxFF@@@868, Layer I, Buffer_1);

DMA2D Draw_X_Line(5, 45, 218, 1, BxFFa@eses, Layer 1, Buffer 1);

DMA2D Draw_Line(®, 248, 328, B, @xFFBOFFFF, Layer 1, Buffer 1);

DMA2D Draw_Image(2ee, 100, smiley 10@px.width, smiley_ l@@px.height, @xFF, NO_MODIF_ALPHA VALUE, (uint32_t)smiley leepx.data, CM_ARGBB838, Layer I, Buffer_1);

for(::){
status_led_blink();

return @;

}

[N

2
73
5

We will start our walk through the code at the main function since this gives a perfect overview
of the steps that we will take. At the beginning, the used peripherals are initialized. HW_Init()
initializes and turns on the display backlight. Also, it sets up the different system clocks and
the timer, which counts every microsecond.

Afterwards we initialize the display which also includes the initialization of the SDRAM,
because this is where the buffer for the displayed images will be located. The DMA2D is used
to send the image data directly from the buffer to the LCD, which speeds up the image
manipulation. Part of the display initialization is the drawing of the EBS-SYSTART logo and
the logo of our 2inl display line.

After the initialization process, we start with the various drawing options. We will take a closer
look at those functions. The definitions of these functions can be found in
src/driver/d_Display_DMAZ2D.c.

ExamplePackage DrawingTextAndimages_V003
20f5

Example Package: Drawing Text and Images_V003

Author: JOKI / 05.07.2021

Example Package: Drawing Text and Images ﬁ SYS-{'-A RT

2.2 Function: DMA2D Fill _Color

79= void DMA2D_Fill Color(uint32_t coler, Layer_e layer, Buffer_e buffer){

DMAZD_TInitStruct.DMAZD Mode = DMAZD R2M;

if(PIKEL_FORMAT == LTDC_Pixelformat_RGB565){
uintlé_t colorl6 = (uintlé_t) coler;
DMA2D_InitStruct.DMA2D CMode = DMA2D_RGBSES;
DMA2D_TnitStruct.DMA2D OutputBlue = (@xB81F & colorl6);
DMA2D_InitStruct.DMA2D OutputGreen =(@x@7E® & colorl6) >»> 5;
DMA2D InitStruct.DMA2D OutputRed = (@xF8@@ & colorl6) >»> 11;

else if(PIXEL_FORMAT == LTDC_Pixelformat_RGE888){
DMA2D_InitStruct.DMAZD CMode = DMA2D_RGBBES;
DMAZD_InitStruct.DMAZD OutputBlue = (@x@@eaFrF & color);
DMAZD_InitStruct.DMAZD OutputGreen =(@x@8FFe@ & color) »>» 8;
DMA2D_InitStruct.DMA2D OutputRed = (@xFF@@e@ & color) >> 16;

}
else if(PINEL_FORMAT == LTDC_Pixelformat_ARGB&88S){
DMA2D_InitStruct.DMA2D_(Mode = DMA2D_ARGBE353;
DMA2D_InitStruct.DMA2D_OutputBlue = (@x@ee@eerF & color);
DMA2D_InitStruct.DMA2D_OutputGreen =(@x@2@@FFee & color) »» 8;
)
)

198 DMA2D_InitStruct.DMAZD OutputRed = (@x@BFFe@ed & color) »>» 16;

199 DMAZD_InitStruct.DMAZD OutputAlpha =(@xFFeeeeed & color) »» 24;

200 }

281 DMAZD_InitStruct.DMA2ZD OutputMemoryAdd = LCD_START_ADDR + LCD_COUNT_BUFFER * layer * LCD_BUFFER_SIZE + buffer * LCD BUFFER_SIZE;
202 DMA2D_TnitStruct.DMA2D OutputOffset = @;

283 DMA2D_InitStruct.DMA2D_NumberOfline = LCD_Y_PIXEL;

284 DMA2D_InitStruct.DMA2D_PixelPerline = LCD_X PIXEL;

285

206 DMA2D_InitAndTransfer();

287 }

This function fills the whole screen with a single color. The color parameter is a 32-bit integer
in an ARGB-format (alpha value, red, green, blue). With layer and buffer you specify which
buffer of which layer you want to fill with the color. The parameters can be Layer_1 or Layer_2
and Buffer_1 or Buffer_2. Those are macros which represent the number 0 or 1. You can see,
how these parameters affect the output memory address in line 201.

2.3 FEunction: DMA2D_Draw_FilledRectangle

-
390~ void DMA2D Draw_FilledRectangle(uintl6_t xpos, uintl6_t ypos, uintlé_t length, uintlé_t height, uint32_t celor, Layer_e layer, Buffer_e buffer){

391 if(xpos »= LOD X PIXEL || ypos >= LCD_¥_PIXEL)

392 return;

393 DMA2D_TnitStruct.DMA2D_Mode = DMA2D_R2M;

394 if (PIXEL_FORMAT == LTDC_Pixelformat_RGBS65){

395 uintlé_t colorlé = (uintl6_t) color;

396 DMA2D_InitStruct.DMA2D CMode = DMA2D_RGBSES;

397 DMA2D_InitStruct.DMA2D OQutputBlue = (@x@@1F & colorl6);

398 DMA2D_InitStruct.DMA2D OutputGreen =(8x87E@ & colorls) »>» 5;
399 DMA2D_InitStruct.DMA2D OutputRed = (BxF8@@ & colorlé) >> 11;
450

}

else if(PIXEL_FORMAT == LTDC_Pixelformat_RGEB3E){
DMA2D_InitStruct.DMA2D CMode = DMA2D_RGBBES;
DMA2D_InitStruct.DMA2D OutputBlue = (@x@@@@FF & color);
DMA2D_InitStruct.DMA2D OutputGreen =(@x@0FFe@ & color) »> 8;
DMA2D_InitStruct.DMA2D OutputRed = (BxFFE@@@ & color) >> 16;

}

else if(PIXEL_FORMAT == LTDC_Pixelformat_ARGBS833){
DMAZD_InitStruct.DMA2D CMode = DMA2D_ARGB388E;
DMA2D_InitStruct.DMA2D OQutputBlue = (BxBO@GEAFF & color);
DMA2D_InitStruct.DMA2D OutputGreen =(@xB0@OFFE@ & color) »» 8;
DMA2D_InitStruct.DMA2D OutputRed = (@x@0FFe@ee & coler) >» 16;
DMAZD_InitStruct.DMAZD OutputAlphs =(@xFFEEeeee & color) »>» 24;

DMA2D_TnitStruct.DMA2D OutputMemoryAdd = LCD_START_ADDR + LCD_COUNT BUFFER * layer * LCD_BUFFER_SIZE + buffer * LCD BUFFER SIZE + ypos * LCD_X PIXEL * LCD BPP + xpos * LCD_BPP;
if(xpos + length » LCD_X_PIXEL) length = LCD_X PIXEL - xpos;

DMA2D_InitStruct.DMA2D OQutputOffset = LCD_X PIXEL - length;

if(ypos + height » LCD_Y_PIXEL) height = LCD_Y_PIXEL - height;

DMA2D_InitStruct.DMA2D NumberOflLine = height;

DMAZD_InitStruct.DMA2D PixelPerline = length;

DMA2D InitAndTransfer();

This function draws a filled rectangle with a given width, height and color at a specified position.
You may notice, that only those pixels which belong to the rectangle are being changed, while
the rest of the display will still be filled with the previous image. This is because of how the x-
and y-position are used to calculate the output memory address. Additionally, we use the
length of the rectangle to determine the number of pixels, that shall be filled, in every line and
the offset between two consecutive lines. The height of the rectangle is used for the number
of lines, which shall be drawn.

ExamplePackage DrawingTextAndimages_V003
3of5

Example Package: Drawing Text and Images_V003

Author: JOKI / 05.07.2021

Example Package: Drawing Text and Images ﬁ SYS-{'_A RT

2.4 Function: DMA2D_write_string

437=uintl6_t DMA2D_write string(char*® string, uintlé_t xpos, uintlé_t ypos, uint32_t color, tFont* font, Layer_e layer, Buffer_e buffer, Layer_e bglayer, Buffer_e bgbuffer){
438 uintlé_t x_offset = @, x_add;

4339 while(*string != "\@"){

439 x_add = DMA2D write_char(*string, xpos + x_offset, ypes, color, font, layer, buffer, bglayer, bgbuffer);
431 if(x_add < @) return x_offset;

432 x_offset += x_add;

4393 string++;

494

495 return x_offset;

496}

aa7

This function writes a string. You must give the position, the color and the font for the text you
want to write. Since the letters have a transparent background, you can use another layer and
another buffer to change the background of your text. The font is stored in a tFont struct. This
struct contains an array of addresses to another array, which stores each pixel of the letter to
be drawn. You can see the structure of those arrays in src/fonts/Courier_New.c. In this
example package we provide the font Courier New in normal and italic with a size of 16 pixels.
If you want to use another font family or another size you have to generate your own font files.
Fortunately, you don’t have to do it all by yourself. We recommend the free tool “Icd-image-
converter’ by riuson (https://sourceforge.net/projects/lcd-image-converter/), which can
automatically generate a C file with the chosen font.

Note, how the wanted tFont struct is declared as extern on the top of the main file.

2.5 Drawing Lines

Our driver also implements three functions to draw a line.
e DMA2D Draw_Y_Line
e DMA2D Draw_X_Line
e DMA2D_Draw_Line

The first two functions are basically the same as DMA2D_ Draw_FilledRectangle since
horizontal and vertical lines are like thin rectangles. The last function (DMA2D_Draw_Line)
draws a line between any start- and endpoint.

2.6 FEunction: DMA2D Draw_Image

235< void DMA2D_Draw_Image(uintlé_t xpos, uintlé_t ypos, uintlé_t xsize, uintlé_t ysize, uints_t alpha, uint32_t alpha_mode, uint32_t addr_image, uint32_t source_format, Layer_e layer, Buffer_e buffer){
36 if(xpos >= LCD_X_PIXEL || ypos »>= LCD_Y_PIXEL) return;

DMA2D_TnitStruct.DMA2D Mode = DMA2D_M2M BLEND;

if(PIXEL_FORMAT == LTDC_Pixelformat RGB365){
DMA2D_InitStruct.DMA2D_CMode = DMA2D_RGBSGS;
DMA2D_BGINnitStruct.DMAZD_BGCM = CM_RGBSES;

¥

else if(PIXEL_FORMAT == LTDC_Pixelformat RGBSSS){
DMA2D_TnitStruct.DMA2D_CMode = DMA2D_RGBASS;
DMA2D_BGINitStruct.DMA2D_BGCM = CM_RGBEEE;

¥

else if(PIXEL_FORMAT == LTDC_Pixelformat ARGBS888){
DMA2D_TnitStruct.DMA2D_CMode = DMA2D_ARGBSSSS;
DMA2D_BGInitStruct.DMA2D BGCM = CM_ARGBB&S3;

H

DMA2D_InitStruct.DMA2D NumberOfline = ysize;

DMA2D_TnitStruct.DMA2D PixelPerline = xsize;

DMA2D_TnitStruct.DMA2D OutputOffset = LCD X PIXEL-xsize;

DMA2D_TnitStruct.DMA2D OutputMemoryAdd = LCD_START_ADDR + LCD_COUNT BUFFER * layer * LCD_BUFFER_SIZE + buffer * LCD BUFFER SIZE + ypos * LCD_X PIXEL * LCD_BPP + xpos * LCD_BPP;

DMAZD_FGInitStruct.DMAZD FGCM = source format;

DMAZD_FGINitStruct.DMA20 FGMA = addr_image;

DMAZD_FGINitStruct.DMA2D_FGO = @;

LPH -» Replaces alpha value of image with parameter alpha;
Combines alpha value from image with parameter alpha;
> Keeps alpha value from image, ignores parameter alpha;
DMAZD_FGEINitStruct.DMA2D_FGPFC_ALPHA MODE = alpha_mode;
DMA2D_FGINitStruct.DMA2D_FGPFC_ALPHA VALUE = alpha;

DMA2D_BGInitStruct.DMAZD_BGMA = LCD_START_ADDR + LCD_COUNT_BUFFER * layer * LCD_BUFFER_SIZE + buffer * LCD_BUFFER_SIZE + ypos * LCD_X_PIXEL * LCD_BPP + xpos * LCD_BPF;
DMA2D_BGINitStruct.DMAZD BGO = LCD X PIXEL-xsize;

DMA2D_TnitandTransfer();

=
The last function, we want to introduce to you, is the function DMA2D_Draw_Image which can
be used to draw any pixel image. Similar to fonts, the pixel image must be stored in an array
of (A)RGB-pixels. With alpha and alpha_mode you can individually change the alpha value for
a whole image. When you choose the alpha mode REPLACE_ALPHA_VALUE, the alpha
values for each pixel in your image will be replaced with the parameter alpha. If you want to

ExamplePackage DrawingTextAndimages_V003
4 0f 5

https://sourceforge.net/projects/lcd-image-converter/

Example Package: Drawing Text and Images_V003

Author: JOKI / 05.07.2021

Example Package: Drawing Text and Images @ SYS-{'_A RT

keep the alpha values of your image file, you need to choose the mode
NO_MODIF_ALPHA_VALUE. The third mode, COMBINE_ALPHA_VALUE, replaces all alpha
values in the image with the original value multiplied with the parameter alpha divided by 255.
The pixel array of the image and the dimensions of the image are stored in a timage struct.
The according C file can again be generated with the free tool “Icd-image-converter’. Take
care, that the size of the image you want to draw doesn’t exceed the dimensions of your
display.

If you have an image which matches the dimensions of the display exactly, you can use the
function DMA2D_Fill_Image() instead, as this function won’t need the wanted position and the
size of your image.

3. Ideas for Exercise Project

Here, we want to give you some suggestions how you could modify our example code and
make your own little project.

After reading the guide for our example package Touch Input and UART you should know
how to react on a touch input. You could try to write a code, which generates a blank canvas.
And when you touch the display, an icon like our smiley appears on the touch location.

ExamplePackage DrawingTextAndimages_V003
50f5

