

ExamplePackage_DigitalPictureFrame_V004 1 of 5

E
x
a
m

p
le

 P
a
c
k
a
g
e
:D

ig
it
a
l
P

ic
tu

re
 f
ra

m
e

_
V

0
0
3

A

u
th

o
r:

 J
O

K
I
/

0
5
.0

7
.2

0
2
1

Example Package: Digital Picture Frame

0. Before you start

This document will give you an overview of the source code for the example package Digital
Picture Frame. Before you can work with it you need to set up your working environment as
explained in the document “ExamplePackage_GettingStarted”. Make sure you have read this
document beforehand and executed all the steps to configure your Workbench. Especially,
that you have added all the paths to the Source Location and Includes properties including
those, who are specifically required for this Digital Picture Frame example.

For a more detailed explanation of how the microcontroller works, please refer to the
STM32F429 Reference Manual (RM0090) and the Standard Peripheral Library documentation
provided by STMicroelectronics.

1. Introduction

In this example package we will implement a digital picture frame. The microcontroller will
search an inserted micro-SD-card for JPG files. Afterwards it will decode each JPG one by
one and show the picture on the display. The current decoded image will be stored on the
external SDRAM.

For the access to the SD-card we use the Open-source FatFs library by ELM-Chan with
addition from Tilen Majerle. For handling the JPGs we use the Open-source LibJPEG library.

Topic: Digital Picture Frame
Author: JOKI
Date: 05.07.2021

ExamplePackage_DigitalPictureFrame_V004 2 of 5

E
x
a
m

p
le

 P
a
c
k
a
g
e
:D

ig
it
a
l
P

ic
tu

re
 f
ra

m
e

_
V

0
0
3

A

u
th

o
r:

 J
O

K
I
/

0
5
.0

7
.2

0
2
1

Example Package: Digital Picture Frame

2. Explanation of Example Code

2.1 Main function

We will start our walkthrough in the code at the main function since this gives a perfect
overview of the steps that we will take. At the beginning, the used peripherals are initialized.
HW_Init() initializes and turns on the display backlight. Also, it sets up the different system
clocks and the timer, which counts every microsecond, and the GPIO-Pin PG10, which detects
if a SD-card is inserted.

Afterwards we initialize the display which also includes the initialization of the SDRAM,
because this is where the buffer for the displayed images will be located. The DMA2D is used
to send the image data directly from the buffer to the LCD, which speeds up the image
manipulation. Part of the display initialization is the drawing of the EBS-SYSTART logo. The
function that executes this task is explained in the Example Package-documentation for
“Drawing Text and Images”.

The initMemBlock() function initializes a 8 Mbyte memory block on the external SDRAM for
use with the self-implemented malloc function. This is needed for the JPG-decoding process
since this will require an amount of memory that is too large for the internal RAM.

disk_initialize(0) will initialize the SD-card (physical drive number 0) which is connected via
SDIO.

After the initialization process, we start with the actual task. Since we want to display JPGs
from the SD-card, we need to find the full file paths of these. This is done with the function
search_for_jpeg(char*) which needs a 2d-array of characters as parameter. This array will be
filled with the file paths. As you can see, we assumed that there won’t be more than 20 files
and that the longest file path won’t exceed 50 characters. Search_for_jpeg() returns the
number of detected JPGs.

After the JPGs are found we enter the main loop. Here, we step through the file name array
and give the current name to the function paint_JPEG_file(char*). This function connects again
to the SD-card and obtains and decodes the JPG-file with the given name and displays it.

ExamplePackage_DigitalPictureFrame_V004 3 of 5

E
x
a
m

p
le

 P
a
c
k
a
g
e
:D

ig
it
a
l
P

ic
tu

re
 f
ra

m
e

_
V

0
0
3

A

u
th

o
r:

 J
O

K
I
/

0
5
.0

7
.2

0
2
1

Example Package: Digital Picture Frame

2.2 Function: SDIO_search_for_jpeg(char*)

This function starts the search process for the JPG files. At first you need to mount the SD-
card. If this was successful we call the TM_FATFS_Search function which checks if memory
needs to be allocated and then scans the SD-card file by file by calling the scan_files() function.
At the end, the SD-card will be unmounted by f_mount(0, “0”, 1).

Every time a file is detected we check the file ending to see if it is a JPG file. If it is, the file path
is written in the name array. When we reached the end of the SD-card, we will return to the
main function and the name array is filled with the file paths of all JPG files on the SD-card.

ExamplePackage_DigitalPictureFrame_V004 4 of 5

E
x
a
m

p
le

 P
a
c
k
a
g
e
:D

ig
it
a
l
P

ic
tu

re
 f
ra

m
e

_
V

0
0
3

A

u
th

o
r:

 J
O

K
I
/

0
5
.0

7
.2

0
2
1

Example Package: Digital Picture Frame

2.3 Function: paint_JPEG_file(char*)

The function paint_JPEG_file() takes the file path of the wanted picture as a parameter. It
begins with mounting the SD-card and opening the wanted file on the SD-card, which creates
a FIL object as a file handle. Then it goes on with initializing the standard error handler for the
decoding process and the decompress struct which will contain all the necessary information
and parameters for decompression. The function jpeg_stdio_src() defines our file handler as
the source for the decompression process. Next, we read the header of our wanted JPG file.
This will give us information about the dimension of the picture.

The next part of the function paint_JPEG_file() checks if the dimension of the picture is
compatible with our used display. Pictures that are too large for the display will be scaled down.
Since the LibJPEG library only supports scaling ratios 1/8, 2/8, … 16/8 we need to find the
right scaling parameters. Afterwards, the decompression is started.

ExamplePackage_DigitalPictureFrame_V004 5 of 5

E
x
a
m

p
le

 P
a
c
k
a
g
e
:D

ig
it
a
l
P

ic
tu

re
 f
ra

m
e

_
V

0
0
3

A

u
th

o
r:

 J
O

K
I
/

0
5
.0

7
.2

0
2
1

Example Package: Digital Picture Frame

After the decompression is finished, we go through the whole decompressed file line by line
with the while loop. Each loop starts by storing a line of the image in the variable buffer. Then
we read the buffer byte by byte. Since one byte represents either red, green or blue and the
structure of buffer is like red, green, blue, red, green, blue, red, …, we combine each group of
three bytes to one RGB-pixel and store the pixels on the external SDRAM. After we read the
whole decompressed file and stored all pixels, we finish the decompression task with
jpeg_finish_decompress() and jpeg_destroy_decompress() which frees all the memory that
may still be allocated by the previous decompression function. Then we close the file handler
and unmount the SD-card.

At last, we wait for 7 seconds before the decompressed picture is send to the display.

3. Ideas for Exercise Project

Here, we want to give you some suggestions how you could modify our example code and
make your own little project.

In our example code we have created a digital picture frame, which changes automatically
every 7 seconds the image. After reading the guide for our example package Processing
Touch Input, you could try to implement a swipe function. Instead of automatically parsing
through the list of found JPGs, the controller could wait until a touch input is detected and
depending on whether the touch input is a left-swipe or a right-swipe it could swap to next or
previous image.

